.\" $OpenBSD: queue.3,v 1.42 2006/01/12 17:01:15 jmc Exp $ .\" $NetBSD: queue.3,v 1.4 1995/07/03 00:25:36 mycroft Exp $ .\" .\" Copyright (c) 1993 The Regents of the University of California. .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)queue.3 8.1 (Berkeley) 12/13/93 .\" .Dd December 21, 2022 .Dt AG_QUEUE 3 .Os Agar 1.7 .Sh NAME .Nm AG_Queue .Nd "Agar singly-linked lists, doubly-linked lists, simple queues, tail queues, and circular queues" .Sh SYNOPSIS .Fd #define _USE_AGAR_QUEUE /* For versions without AG_ prefix */ .Fd #include .Sh DESCRIPTION These macros define and operate on five types of data structures: singly-linked lists, simple queues, lists, tail queues, and circular queues. All five structures support the following functionality: .Pp .Bl -enum -compact -offset indent .It Insertion of a new entry at the head of the list. .It Insertion of a new entry after any element in the list. .It Removal of an entry from the head of the list. .It Forward traversal through the list. .El .Pp Singly-linked lists are the simplest of the five data structures and support only the above functionality. Singly-linked lists are ideal for applications with large datasets and few or no removals, or for implementing a LIFO queue. .Pp Simple queues add the following functionality: .Pp .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It All list insertions must specify the head of the list. .It Each head entry requires two pointers rather than one. .It Code size is about 15% greater and operations run about 20% slower than singly-linked lists. .El .Pp Simple queues are ideal for applications with large datasets and few or no removals, or for implementing a FIFO queue. .Pp All doubly linked types of data structures (lists, tail queues, and circle queues) additionally allow: .Pp .Bl -enum -compact -offset indent .It Insertion of a new entry before any element in the list. .It Removal of any entry in the list. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It Each element requires two pointers rather than one. .It Code size and execution time of operations (except for removal) is about twice that of the singly-linked data-structures. .El .Pp Lists are the simplest of the doubly linked data structures and support only the above functionality over singly-linked lists. .Pp Tail queues add the following functionality: .Pp .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .It They may be traversed backwards, at a cost. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It All list insertions and removals must specify the head of the list. .It Each head entry requires two pointers rather than one. .It Code size is about 15% greater and operations run about 20% slower than singly-linked lists. .El .Pp Circular queues add the following functionality: .Pp .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .It They may be traversed backwards, from tail to head. .El .Pp However: .Pp .Bl -enum -compact -offset indent .It All list insertions and removals must specify the head of the list. .It Each head entry requires two pointers rather than one. .It The termination condition for traversal is more complex. .It Code size is about 40% greater and operations run about 45% slower than lists. .El .Pp In the macro definitions, .Fa TYPE is the name tag of a user defined structure that must contain a field of type .Li AG_SLIST_ENTRY , .Li AG_LIST_ENTRY , .Li AG_SIMPLEQ_ENTRY , .Li AG_TAILQ_ENTRY , or .Li AG_CIRCLEQ_ENTRY , named .Fa NAME . The argument .Fa HEADNAME is the name tag of a user defined structure that must be declared using the macros .Fn AG_SLIST_HEAD , .Fn AG_LIST_HEAD , .Fn AG_SIMPLEQ_HEAD , .Fn AG_TAILQ_HEAD , or .Fn AG_CIRCLEQ_HEAD . See the examples below for further explanation of how these macros are used. .Sh SINGLY-LINKED LISTS .nr nS 1 .Fn AG_SLIST_ENTRY "TYPE" .Pp .Fn AG_SLIST_HEAD "HEADNAME" "TYPE" .Pp .Fn AG_SLIST_HEAD_ "TYPE" .Pp .Fn AG_SLIST_HEAD_INITIALIZER "AG_SLIST_HEAD head" .Pp .Ft "struct TYPE *" .Fn AG_SLIST_FIRST "AG_SLIST_HEAD *head" .Pp .Ft "struct TYPE *" .Fn AG_SLIST_NEXT "struct TYPE *listelm" "AG_SLIST_ENTRY NAME" .Pp .Ft "struct TYPE *" .Fn AG_SLIST_END "AG_SLIST_HEAD *head" .Pp .Ft "bool" .Fn AG_SLIST_EMPTY "AG_SLIST_HEAD *head" .Pp .Fn AG_SLIST_FOREACH "VARNAME" "AG_SLIST_HEAD *head" "AG_SLIST_ENTRY NAME" .Pp .Fn AG_SLIST_FOREACH_PREVPTR "VARNAME" "VARNAMEP" "AG_SLIST_HEAD *head" "AG_SLIST_ENTRY NAME" .Pp .Ft void .Fn AG_SLIST_INIT "AG_SLIST_HEAD *head" .Pp .Ft void .Fn AG_SLIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "AG_SLIST_ENTRY NAME" .Pp .Ft void .Fn AG_SLIST_INSERT_HEAD "AG_SLIST_HEAD *head" "struct TYPE *elm" "AG_SLIST_ENTRY NAME" .Pp .Ft void .Fn AG_SLIST_REMOVE_HEAD "AG_SLIST_HEAD *head" "AG_SLIST_ENTRY NAME" .Pp .Ft void .Fn AG_SLIST_REMOVE_NEXT "AG_SLIST_HEAD *head" "struct TYPE *elm" "AG_SLIST_ENTRY NAME" .Pp .Ft void .Fn AG_SLIST_REMOVE "AG_SLIST_HEAD *head" "struct TYPE *elm" "TYPE" "AG_SLIST_ENTRY NAME" .Pp .nr nS 0 A singly-linked list is headed by a structure defined by the .Fn AG_SLIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are singly linked for minimum space and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements. New elements can be added to the list after an existing element or at the head of the list. A .Fa AG_SLIST_HEAD structure is declared as follows: .Bd -literal -offset indent .\" SYNTAX(c) AG_SLIST_HEAD(HEADNAME, TYPE) head; AG_SLIST_HEAD_(TYPE) head; /* If HEADNAME is not needed */ .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent .\" SYNTAX(c) struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn AG_SLIST_ENTRY macro declares a structure that connects the elements in the list. .Pp The .Fn AG_SLIST_INIT macro initializes the list referenced by .Fa head . .Pp The list can also be initialized statically by using the .Fn AG_SLIST_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent .\" SYNTAX(c) AG_SLIST_HEAD(HEADNAME, TYPE) head = AG_SLIST_HEAD_INITIALIZER(head); .Ed .Pp The .Fn AG_SLIST_INSERT_HEAD macro inserts the new element .Fa elm at the head of the list. .Pp The .Fn AG_SLIST_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn AG_SLIST_REMOVE_HEAD macro removes the first element of the list pointed by .Fa head . .Pp The .Fn AG_SLIST_REMOVE_NEXT macro removes the list element immediately following .Fa elm . .Pp The .Fn AG_SLIST_REMOVE macro removes the element .Fa elm of the list pointed by .Fa head . .Pp The .Fn AG_SLIST_FIRST and .Fn AG_SLIST_NEXT macros can be used to traverse the list: .Bd -literal -offset indent .\" SYNTAX(c) for (np = AG_SLIST_FIRST(&head); np != NULL; np = AG_SLIST_NEXT(np, NAME)) .Ed .Pp Or, for simplicity, one can use the .Fn AG_SLIST_FOREACH macro: .Bd -literal -offset indent .\" SYNTAX(c) AG_SLIST_FOREACH(np, head, NAME) { /* ... */ } .Ed .Pp The .Fn AG_SLIST_FOREACH_PREVPTR macro is similar to .Fn AG_SLIST_FOREACH except that it stores a pointer to the previous element in .Fa VARNAMEP . This provides access to the previous element while traversing the list, as one would have with a doubly-linked list. .Pp The .Fn AG_SLIST_EMPTY macro should be used to check whether a simple list is empty. .Sh SINGLY-LINKED LIST EXAMPLE .Bd -literal .\" SYNTAX(c) AG_SLIST_HEAD(listhead, entry) head; struct entry { /* ... */ AG_SLIST_ENTRY(entry) entries; /* Simple list. */ /* ... */ } *n1, *n2, *np; AG_SLIST_INIT(&head); /* Initialize simple list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ AG_SLIST_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ AG_SLIST_INSERT_AFTER(n1, n2, entries); AG_SLIST_FOREACH(np, &head, entries) { /* Forward traversal. */ /* np-> ... */ } while (!AG_SLIST_EMPTY(&head)) /* Delete. */ AG_SLIST_REMOVE_HEAD(&head, entries); .Ed .Sh LISTS .nr nS 1 .Fn AG_LIST_ENTRY "TYPE" .Pp .Fn AG_LIST_HEAD "HEADNAME" "TYPE" .Pp .Fn AG_LIST_HEAD_ "TYPE" .Pp .Fn AG_LIST_HEAD_INITIALIZER "AG_LIST_HEAD head" .Pp .Ft "struct TYPE *" .Fn AG_LIST_FIRST "AG_LIST_HEAD *head" .Pp .Ft "struct TYPE *" .Fn AG_LIST_NEXT "struct TYPE *listelm" "AG_LIST_ENTRY NAME" .Pp .Ft "struct TYPE *" .Fn AG_LIST_END "AG_LIST_HEAD *head" .Pp .Ft "bool" .Fn AG_LIST_EMPTY "AG_LIST_HEAD *head" .Pp .Fn AG_LIST_FOREACH "VARNAME" "AG_LIST_HEAD *head" "AG_LIST_ENTRY NAME" .Pp .Ft void .Fn AG_LIST_INIT "AG_LIST_HEAD *head" .Pp .Ft void .Fn AG_LIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "AG_LIST_ENTRY NAME" .Pp .Ft void .Fn AG_LIST_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "AG_LIST_ENTRY NAME" .Pp .Ft void .Fn AG_LIST_INSERT_HEAD "AG_LIST_HEAD *head" "struct TYPE *elm" "AG_LIST_ENTRY NAME" .Pp .Ft void .Fn AG_LIST_REMOVE "struct TYPE *elm" "AG_LIST_ENTRY NAME" .Pp .Ft void .Fn AG_LIST_REPLACE "struct TYPE *elm" "struct TYPE *elm2" "AG_LIST_ENTRY NAME" .Pp .nr nS 0 A list is headed by a structure defined by the .Fn AG_LIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can be removed without traversing the list. New elements can be added to the list after an existing element, before an existing element, or at the head of the list. A .Fa AG_LIST_HEAD structure is declared as follows: .Bd -literal -offset indent .\" SYNTAX(c) AG_LIST_HEAD(HEADNAME, TYPE) head; AG_LIST_HEAD_(TYPE) head; /* If HEADNAME is not needed */ .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent .\" SYNTAX(c) struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn AG_LIST_ENTRY macro declares a structure that connects the elements in the list. .Pp The .Fn AG_LIST_INIT macro initializes the list referenced by .Fa head . .Pp The list can also be initialized statically by using the .Fn AG_LIST_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent .\" SYNTAX(c) AG_LIST_HEAD(HEADNAME, TYPE) head = AG_LIST_HEAD_INITIALIZER(head); .Ed .Pp The .Fn AG_LIST_INSERT_HEAD macro inserts the new element .Fa elm at the head of the list. .Pp The .Fn AG_LIST_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn AG_LIST_INSERT_BEFORE macro inserts the new element .Fa elm before the element .Fa listelm . .Pp The .Fn AG_LIST_REMOVE macro removes the element .Fa elm from the list. .Pp The .Fn AG_LIST_REPLACE macro replaces the list element .Fa elm with the new element .Fa elm2 . .Pp The .Fn AG_LIST_FIRST and .Fn AG_LIST_NEXT macros can be used to traverse the list: .Bd -literal -offset indent .\" SYNTAX(c) for (np = AG_LIST_FIRST(&head); np != NULL; np = AG_LIST_NEXT(np, NAME)) .Ed .Pp Or, for simplicity, one can use the .Fn AG_LIST_FOREACH macro: .Bd -literal -offset indent .\" SYNTAX(c) AG_LIST_FOREACH(np, head, NAME) { /* ... */ } .Ed .Pp The .Fn AG_LIST_EMPTY macro should be used to check whether a list is empty. .Sh LIST EXAMPLE .Bd -literal .\" SYNTAX(c) AG_LIST_HEAD(listhead, entry) head; struct entry { /* ... */ AG_LIST_ENTRY(entry) entries; /* List. */ /* ... */ } *n1, *n2, *np; AG_LIST_INIT(&head); /* Initialize list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ AG_LIST_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ AG_LIST_INSERT_AFTER(n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ AG_LIST_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ AG_LIST_FOREACH(np, &head, entries) /* np-> ... */ while (!AG_LIST_EMPTY(&head)) /* Delete. */ AG_LIST_REMOVE(AG_LIST_FIRST(&head), entries); .Ed .Sh SIMPLE QUEUES .nr nS 1 .Fn AG_SIMPLEQ_ENTRY "TYPE" .Pp .Fn AG_SIMPLEQ_HEAD "HEADNAME" "TYPE" .Pp .Fn AG_SIMPLEQ_HEAD_ "TYPE" .Pp .Fn AG_SIMPLEQ_HEAD_INITIALIZER "AG_SIMPLEQ_HEAD head" .Pp .Ft "struct TYPE *" .Fn AG_SIMPLEQ_FIRST "AG_SIMPLEQ_HEAD *head" .Pp .Ft "struct TYPE *" .Fn AG_SIMPLEQ_NEXT "struct TYPE *listelm" "AG_SIMPLEQ_ENTRY NAME" .Pp .Ft "struct TYPE *" .Fn AG_SIMPLEQ_END "AG_SIMPLEQ_HEAD *head" .Pp .Ft void .Fn AG_SIMPLEQ_INIT "AG_SIMPLEQ_HEAD *head" .Pp .Ft void .Fn AG_SIMPLEQ_INSERT_HEAD "AG_SIMPLEQ_HEAD *head" "struct TYPE *elm" "AG_SIMPLEQ_ENTRY NAME" .Pp .Ft void .Fn AG_SIMPLEQ_INSERT_TAIL "AG_SIMPLEQ_HEAD *head" "struct TYPE *elm" "AG_SIMPLEQ_ENTRY NAME" .Pp .Ft void .Fn AG_SIMPLEQ_INSERT_AFTER "AG_SIMPLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "AG_SIMPLEQ_ENTRY NAME" .Pp .Ft void .Fn AG_SIMPLEQ_REMOVE_HEAD "AG_SIMPLEQ_HEAD *head" "AG_SIMPLEQ_ENTRY NAME" .Pp .nr nS 0 A simple queue is headed by a structure defined by the .Fn AG_SIMPLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the simple queue and the other to the last element in the simple queue. The elements are singly linked. New elements can be added to the queue after an existing element, at the head of the queue or at the tail of the queue. A .Fa AG_SIMPLEQ_HEAD structure is declared as follows: .Bd -literal -offset indent .\" SYNTAX(c) AG_SIMPLEQ_HEAD(HEADNAME, TYPE) head; AG_SIMPLEQ_HEAD_(TYPE) head; /* If HEADNAME is not needed */ .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the queue. A pointer to the head of the queue can later be declared as: .Bd -literal -offset indent .\" SYNTAX(c) struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn AG_SIMPLEQ_ENTRY macro declares a structure that connects the elements in the queue. .Pp The .Fn AG_SIMPLEQ_INIT macro initializes the queue referenced by .Fa head . .Pp The queue can also be initialized statically by using the .Fn AG_SIMPLEQ_HEAD_INITIALIZER macro like this: .Bd -literal -offset indent .\" SYNTAX(c) AG_SIMPLEQ_HEAD(HEADNAME, TYPE) head = AG_SIMPLEQ_HEAD_INITIALIZER(head); .Ed .Pp The .Fn AG_SIMPLEQ_INSERT_HEAD macro inserts the new element .Fa elm at the head of the queue. .Pp The .Fn AG_SIMPLEQ_INSERT_TAIL macro inserts the new element .Fa elm at the end of the queue. .Pp The .Fn AG_SIMPLEQ_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn AG_SIMPLEQ_REMOVE_HEAD macro removes the first element from the queue. .Pp The .Fn AG_SIMPLEQ_FIRST and .Fn AG_SIMPLEQ_NEXT macros can be used to traverse the queue. The .Fn AG_SIMPLEQ_FOREACH is used for queue traversal: .Bd -literal -offset indent .\" SYNTAX(c) AG_SIMPLEQ_FOREACH(np, head, NAME) { /* ... */ } .Ed .Pp The .Fn AG_SIMPLEQ_EMPTY macro should be used to check whether a list is empty. .Sh SIMPLE QUEUE EXAMPLE .Bd -literal .\" SYNTAX(c) AG_SIMPLEQ_HEAD(listhead, entry) head = AG_SIMPLEQ_HEAD_INITIALIZER(head); struct entry { /* ... */ AG_SIMPLEQ_ENTRY(entry) entries; /* Simple queue. */ /* ... */ } *n1, *n2, *np; n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ AG_SIMPLEQ_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ AG_SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert at the tail. */ AG_SIMPLEQ_INSERT_TAIL(&head, n2, entries); /* Forward traversal. */ AG_SIMPLEQ_FOREACH(np, &head, entries) { /* np-> ... */ } /* Delete. */ while (!AG_SIMPLEQ_EMPTY(&head)) AG_SIMPLEQ_REMOVE_HEAD(&head, entries); .Ed .Sh TAIL QUEUES .nr nS 1 .Fn AG_TAILQ_ENTRY "TYPE" .Pp .Fn AG_TAILQ_HEAD "HEADNAME" "TYPE" .Pp .Fn AG_TAILQ_HEAD_ "TYPE" .Pp .Fn AG_TAILQ_HEAD_INITIALIZER "AG_TAILQ_HEAD head" .Pp .Ft "struct TYPE *" .Fn AG_TAILQ_FIRST "AG_TAILQ_HEAD *head" .Pp .Ft "struct TYPE *" .Fn AG_TAILQ_NEXT "struct TYPE *listelm" "AG_TAILQ_ENTRY NAME" .Pp .Ft "struct TYPE *" .Fn AG_TAILQ_END "AG_TAILQ_HEAD *head" .Pp .Ft "struct TYPE *" .Fn AG_TAILQ_LAST "AG_TAILQ_HEAD *head" "HEADNAME NAME" .Pp .Fn AG_TAILQ_PREV "struct TYPE *listelm" "HEADNAME NAME" "AG_TAILQ_ENTRY NAME" .Pp .Ft "bool" .Fn AG_TAILQ_EMPTY "AG_TAILQ_HEAD *head" .Pp .Fn AG_TAILQ_FOREACH "VARNAME" "AG_TAILQ_HEAD *head" "AG_TAILQ_ENTRY NAME" .Pp .Fn AG_TAILQ_FOREACH_REVERSE "VARNAME" "AG_TAILQ_HEAD *head" "HEADNAME" "AG_TAILQ_ENTRY NAME" .Pp .Ft void .Fn AG_TAILQ_INIT "AG_TAILQ_HEAD *head" .Pp .Ft void .Fn AG_TAILQ_INSERT_AFTER "AG_TAILQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "AG_TAILQ_ENTRY NAME" .Pp .Ft void .Fn AG_TAILQ_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "AG_TAILQ_ENTRY NAME" .Pp .Ft void .Fn AG_TAILQ_INSERT_HEAD "AG_TAILQ_HEAD *head" "struct TYPE *elm" "AG_TAILQ_ENTRY NAME" .Pp .Ft void .Fn AG_TAILQ_INSERT_TAIL "AG_TAILQ_HEAD *head" "struct TYPE *elm" "AG_TAILQ_ENTRY NAME" .Pp .Ft void .Fn AG_TAILQ_REMOVE "AG_TAILQ_HEAD *head" "struct TYPE *elm" "AG_TAILQ_ENTRY NAME" .Pp .nr nS 0 A tail queue is headed by a structure defined by the .Fn AG_TAILQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the tail queue and the other to the last element in the tail queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A .Fa AG_TAILQ_HEAD structure is declared as follows: .Bd -literal -offset indent .\" SYNTAX(c) AG_TAILQ_HEAD(HEADNAME, TYPE) head; AG_TAILQ_HEAD_(TYPE) head; /* If HEADNAME is not needed */ .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the tail queue. A pointer to the head of the tail queue can later be declared as: .Bd -literal -offset indent .\" SYNTAX(c) struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn AG_TAILQ_ENTRY macro declares a structure that connects the elements in the tail queue. .Pp The .Fn AG_TAILQ_INIT macro initializes the tail queue referenced by .Fa head . .Pp The tail queue can also be initialized statically by using the .Fn AG_TAILQ_HEAD_INITIALIZER macro. .Pp The .Fn AG_TAILQ_INSERT_HEAD macro inserts the new element .Fa elm at the head of the tail queue. .Pp The .Fn AG_TAILQ_INSERT_TAIL macro inserts the new element .Fa elm at the end of the tail queue. .Pp The .Fn AG_TAILQ_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn AG_TAILQ_INSERT_BEFORE macro inserts the new element .Fa elm before the element .Fa listelm . .Pp The .Fn AG_TAILQ_REMOVE macro removes the element .Fa elm from the tail queue. .Pp .Fn AG_TAILQ_FOREACH and .Fn AG_TAILQ_FOREACH_REVERSE are used for traversing a tail queue. .Fn AG_TAILQ_FOREACH starts at the first element and proceeds towards the last. .Fn AG_TAILQ_FOREACH_REVERSE starts at the last element and proceeds towards the first. .Bd -literal -offset indent .\" SYNTAX(c) AG_TAILQ_FOREACH(np, &head, NAME) { /* ... */ } AG_TAILQ_FOREACH_REVERSE(np, &head, HEADNAME, NAME) { /* ... */ } .Ed .Pp The .Fn AG_TAILQ_FIRST , .Fn AG_TAILQ_NEXT , .Fn AG_TAILQ_LAST and .Fn AG_TAILQ_PREV macros can be used to manually traverse a tail queue or an arbitrary part of one. .Pp The .Fn AG_TAILQ_EMPTY macro should be used to check whether a tail queue is empty. .Sh TAIL QUEUE EXAMPLE .Bd -literal .\" SYNTAX(c) AG_TAILQ_HEAD(tailhead, entry) head; struct entry { /* ... */ AG_TAILQ_ENTRY(entry) entries; /* Tail queue. */ /* ... */ } *n1, *n2, *np; AG_TAILQ_INIT(&head); /* Initialize queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ AG_TAILQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ AG_TAILQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ AG_TAILQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ AG_TAILQ_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ AG_TAILQ_FOREACH(np, &head, entries) { /* np-> ... */ } /* Manual forward traversal. */ for (np = n2; np != NULL; np = AG_TAILQ_NEXT(np, entries)) { /* np-> ... */ } /* Delete. */ while (np = AG_TAILQ_FIRST(&head)) AG_TAILQ_REMOVE(&head, np, entries); .Ed .Sh CIRCULAR QUEUES .nr nS 1 .Fn AG_CIRCLEQ_ENTRY "TYPE" .Pp .Fn AG_CIRCLEQ_HEAD "HEADNAME" "TYPE" .Pp .Fn AG_CIRCLEQ_HEAD_ "TYPE" .Pp .Fn AG_CIRCLEQ_HEAD_INITIALIZER "AG_CIRCLEQ_HEAD head" .Pp .Ft "struct TYPE *" .Fn AG_CIRCLEQ_FIRST "AG_CIRCLEQ_HEAD *head" .Pp .Ft "struct TYPE *" .Fn AG_CIRCLEQ_LAST "AG_CIRCLEQ_HEAD *head" .Pp .Ft "struct TYPE *" .Fn AG_CIRCLEQ_END "AG_CIRCLEQ_HEAD *head" .Pp .Ft "struct TYPE *" .Fn AG_CIRCLEQ_NEXT "struct TYPE *listelm" "AG_CIRCLEQ_ENTRY NAME" .Pp .Ft "struct TYPE *" .Fn AG_CIRCLEQ_PREV "struct TYPE *listelm" "AG_CIRCLEQ_ENTRY NAME" .Pp .Ft "bool" .Fn AG_CIRCLEQ_EMPTY "AG_CIRCLEQ_HEAD *head" .Pp .Fn AG_CIRCLEQ_FOREACH "VARNAME" "AG_CIRCLEQ_HEAD *head" "AG_CIRCLEQ_ENTRY NAME" .Pp .Fn AG_CIRCLEQ_FOREACH_REVERSE "VARNAME" "AG_CIRCLEQ_HEAD *head" "AG_CIRCLEQ_ENTRY NAME" .Pp .Ft void .Fn AG_CIRCLEQ_INIT "AG_CIRCLEQ_HEAD *head" .Pp .Ft void .Fn AG_CIRCLEQ_INSERT_AFTER "AG_CIRCLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "AG_CIRCLEQ_ENTRY NAME" .Pp .Ft void .Fn AG_CIRCLEQ_INSERT_BEFORE "AG_CIRCLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "AG_CIRCLEQ_ENTRY NAME" .Pp .Ft void .Fn AG_CIRCLEQ_INSERT_HEAD "AG_CIRCLEQ_HEAD *head" "struct TYPE *elm" "AG_CIRCLEQ_ENTRY NAME" .Pp .Ft void .Fn AG_CIRCLEQ_INSERT_TAIL "AG_CIRCLEQ_HEAD *head" "struct TYPE *elm" "AG_CIRCLEQ_ENTRY NAME" .Pp .Ft void .Fn AG_CIRCLEQ_REMOVE "AG_CIRCLEQ_HEAD *head" "struct TYPE *elm" "AG_CIRCLEQ_ENTRY NAME" .Pp .nr nS 0 A circular queue is headed by a structure defined by the .Fn AG_CIRCLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the circular queue and the other to the last element in the circular queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A .Fa AG_CIRCLEQ_HEAD structure is declared as follows: .Bd -literal -offset indent .\" SYNTAX(c) AG_CIRCLEQ_HEAD(HEADNAME, TYPE) head; AG_CIRCLEQ_HEAD_(TYPE) head; /* If HEADNAME is not needed */ .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and struct .Fa TYPE is the type of the elements to be linked into the circular queue. A pointer to the head of the circular queue can later be declared as: .Bd -literal -offset indent .\" SYNTAX(c) struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The .Fn AG_CIRCLEQ_ENTRY macro declares a structure that connects the elements in the circular queue. .Pp The .Fn AG_CIRCLEQ_INIT macro initializes the circular queue referenced by .Fa head . .Pp The circular queue can also be initialized statically by using the .Fn AG_CIRCLEQ_HEAD_INITIALIZER macro. .Pp The .Fn AG_CIRCLEQ_INSERT_HEAD macro inserts the new element .Fa elm at the head of the circular queue. .Pp The .Fn AG_CIRCLEQ_INSERT_TAIL macro inserts the new element .Fa elm at the end of the circular queue. .Pp The .Fn AG_CIRCLEQ_INSERT_AFTER macro inserts the new element .Fa elm after the element .Fa listelm . .Pp The .Fn AG_CIRCLEQ_INSERT_BEFORE macro inserts the new element .Fa elm before the element .Fa listelm . .Pp The .Fn AG_CIRCLEQ_REMOVE macro removes the element .Fa elm from the circular queue. .Pp The .Fn AG_CIRCLEQ_FIRST , .Fn AG_CIRCLEQ_LAST , .Fn AG_CIRCLEQ_END , .Fn AG_CIRCLEQ_NEXT and .Fn AG_CIRCLEQ_PREV macros can be used to traverse a circular queue. The .Fn AG_CIRCLEQ_FOREACH is used for circular queue forward traversal: .Bd -literal -offset indent .\" SYNTAX(c) AG_CIRCLEQ_FOREACH(np, head, NAME) { /* ... */ } .Ed .Pp The .Fn AG_CIRCLEQ_FOREACH_REVERSE macro acts like .Fn AG_CIRCLEQ_FOREACH but traverses the circular queue backwards. .Pp The .Fn AG_CIRCLEQ_EMPTY macro should be used to check whether a circular queue is empty. .Sh CIRCULAR QUEUE EXAMPLE .Bd -literal .\" SYNTAX(c) AG_CIRCLEQ_HEAD(circleq, entry) head; struct entry { /* ... */ AG_CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */ /* ... */ } *n1, *n2, *np; AG_CIRCLEQ_INIT(&head); /* Initialize circular queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ AG_CIRCLEQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ AG_CIRCLEQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ AG_CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ AG_CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries); /* Forward traversal. */ AG_CIRCLEQ_FOREACH(np, &head, entries) { /* np-> ... */ } /* Reverse traversal. */ AG_CIRCLEQ_FOREACH_REVERSE(np, &head, entries) { /* np-> ... */ } /* Delete. */ while (!AG_CIRCLEQ_EMPTY(&head)) AG_CIRCLEQ_REMOVE(&head, AG_CIRCLEQ_FIRST(&head), entries); .Ed .Sh NOTES It is an error to assume the next and previous fields are preserved after an element has been removed from a list or queue. Using any macro (except the various forms of insertion) on an element removed from a list or queue is incorrect. An example of erroneous usage is removing the same element twice. .Pp The .Fn AG_SLIST_END , .Fn AG_LIST_END , .Fn AG_SIMPLEQ_END and .Fn AG_TAILQ_END macros are provided for symmetry with .Fn AG_CIRCLEQ_END . They expand to .Dv NULL and don't serve any useful purpose. .Pp Trying to free a list in the following way is a common error: .Bd -literal -offset indent .\" SYNTAX(c) AG_LIST_FOREACH(var, head, entry) { free(var); } free(head); .Ed .Pp Since .Va var is free'd, the .Fn FOREACH macro refers to a pointer that may have been reallocated already. Proper code needs a second variable. .Bd -literal -offset indent .\" SYNTAX(c) for (var = AG_LIST_FIRST(head); var != AG_LIST_END(head); var = nxt) { nxt = AG_LIST_NEXT(var, entry); free(var); } AG_LIST_INIT(head); /* to put the list back in order */ .Ed .Pp A similar situation occurs when the current element is deleted from the list. Correct code saves a pointer to the next element in the list before removing the element: .Bd -literal -offset indent .\" SYNTAX(c) for (var = AG_LIST_FIRST(head); var != AG_LIST_END(head); var = nxt) { nxt = AG_LIST_NEXT(var, entry); if (some_condition) { AG_LIST_REMOVE(var, entry); some_function(var); } } .Ed .Sh HISTORY The .Nm macros first appeared in Agar 1.0 and are based on the .Bx 4.4 queue macros in .Pa sys/queue.h .